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Abstract. The ability to specify CP programs in term of a declarative
model and a search procedure is a central feature primarily responsible
for the industrial CP successes. However, writing search procedures is of-
ten difficult for novices or people accustomed to mathematical program-
ming tools where this step is absent. Several attempts have been made
to produce generic black-box searches that would be suitable for the vast
majority of benchmarks. This paper offers an alternative viewpoint and
argues for the synthesis of a search from the declarative model to exploit
the problem instance structures. The intent is not to eliminate the search
altogether. Instead, it is to have a default that performs adequately in
the majority of cases while retaining the ability to write full-fledged pro-
cedures for experts. Preliminary empirical results demonstrate that the
approach is viable, delivering search procedures approaching and some-
times rivaling hand-crafted code produced by experts.

1 Introduction

Constraint programming (CP) techniques are successfully used in various in-
dustries and quite successful when confronted with hard constraint satisfaction
problems. Parts of this success can be attributed to the considerable amount of
flexibility that arise from the ability to write completely custom search proce-
dures. Indeed, constraint programming has often been described from the basic
belief that

CP = Model + Search

where the model is responsible for providing a declarative specification of the
constraints that solutions of the problem must satisfy and the search is a specifi-
cation of how to explore the search space to produce such a solution. In a number
of languages designed for constraint programming, the search can be quite so-
phisticated. It can often concisely specify variable and value selection heuristics,
search phases [11], restarting strategies [7], large neighborhood search [1], explo-
ration strategies like depth-first-search, best-first search or limited discrepancy
search [9] to name just a few.

This capability is in stark contrast with, for instance, mathematical pro-
gramming where the search is a so-called black-box that can only be controlled
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through a collection of parameters affecting pre-processing, cut generation or
the selection of predefined global heuristics. Users of mathematical program-
ming are accustomed to solely rely on modeling techniques and reformulations
to indirectly influence and hopefully strengthen the search process effectiveness.

Unsurprisingly, many users of one technology often bring their baggages,
habits and expectations when discovering a new technology like CP. Too often,
newcomers overlook the true potential of open (i.e., white-box) search specifi-
cation and fail to exploit it. The observation prompted a number of efforts to
rethink constraint programming tools and mold them after mathematical pro-
gramming tools by eliminating open search procedures in favors of intelligent
black-box procedures. Efforts of this type include [11] and [4] while others, e.g.,
[14] elected to provide a number of predefined common heuristics.

Our contention in this paper is that it is possible to get the best of both
worlds, retaining the ability to write custom search procedures and synthesizing
model-specific search procedures that are competitive with procedures hand-
crafted by experts. The central contribution of this paper is Cp-as, a model-
driven automatic search procedure generator. Cp-as is written in Comet [17], an
object-oriented programming language with support for constraint-programming
at large and finite domains solving in particular. Cp-as analyzes a CP model
instance at runtime, examining the variable declarations, the arithmetic and log-
ical constraints, as well as the global constraints, to synthesize a procedure that
is likely to perform reasonably well on this model instance. Cp-as is evaluated on
a collection of CP models that requires custom search such as scene allocation,
progressive party and warehouse allocation. The rest of the paper is organized as
follows. Section 2 presents some related work. Section 3 provides details about
the synthesis process of Cp-as. Section 4 illustrates the process on some popular
CP applications. Experimental results are reported in section 5. Finally, section
6 concludes.

2 Related Work

Some work have been already done on the process of search synthesis from high
level models. Minion [4] offers a black-box search and combines it with matrix
based modeling, aiming for raw speed alone to produce ‘model and run’ solutions.
The idea of deriving the search from the model appeared in [19] for Constraint-
Based Local Search (CBLS) in which search procedures can be automatically
synthesized from models expressed in a rich constraint language. Given a model,
a CBLS synthesizer derives a local search algorithm for a specific meta-heuristic
in two steps. It first analyzes the model and the instance data and extracts its
structure. The synthesizer then derives the neighborhood, as well as any other
component required by the meta-heuristic. The experimental results show that
effective LS algorithms can be synthesized from high-level models, inducing only
a small overhead over state-of-the-art procedures. Aeon [12] is closely related
and focuses exclusively on scheduling. Given a scheduling model specified in a
high-level modeling language, Aeon recognizes and classifies its structures, and



synthesizes an appropriate search algorithm. The classification result drives the
selection of a search template. Aeon provides synthesizers for Constraint-based
Scheduling (complete search) or Constraint-based local search (incomplete). Ex-
perimental results indicate that this approach may be competitive with state-of-
the-art search algorithms. This paper extends this line of thinking with synthesis
of search for general non-scheduling CP models.

3 The Synthesis Process

Cp-as, which is written in Comet, generates search procedures for Comet mod-
els. Cp-as is defined in term of an extensible collection of rules meant to recognize
features of the model for which good heuristics are known. Each rule can issue a
set of recommendations where a recommendation is characterized by a score indi-
cating its fitness, a subset of variables to which it applies, and three heuristics to
be used for labeling, namely: a variable, value and symmetry-breaking heuristic.
Cp-as applies all the rules to a model to obtain a set of recommendations which
fully specify the search procedure. Recommendations are applied in decreasing
order of scores, hence if several recommendations apply to the same subset of
variables, the highest-scoring one will take precedence. If there is an overlapping
among different subsets of variables, then the highest-scoring set will be labelled
first and will not be considered by lower-score recommendations. This section
details this process.

3.1 Preliminaries

A Constraint Satisfaction Problem (CSP) is a triplet <X,D,C>, where X is
a set of variables, D is a set of domains, and C is a set of constraints. Each
xi ∈ X is associated with a domain Di ∈ D. An assignment α associates a
value v ∈ Di to each variable xi, i.e., α(xi) = v ∈ Di. A constraint c ∈ C, over
variables xi, · · · , xj , specifies a subset of the Cartesian product Di × · · · × Dj

indicating mutually-compatible variable assignments. A tuple v = (vi, · · · , vj)
satisfies a constraint c(xi, · · · , xj) if v ∈ c. A solution α is a complete assignment
that satisfies all the constraints. A Constraint Optimization Problem (COP)
<X,D,C,f> is a CSP with an objective function f .

Definition 1. A variable selection heuristic hx maps a set of variables of fixed
cardinality k to a permutation of those variables: hx : 2X → N→ X.

Example 1. For instance, the familiar first-fail variable selection heuristic over
a set of variables X returns a permutation function π : N → X of the naturals
0..k − 1 that satisfies

∀i, j ∈ 0..k − 1 : i < j ⇒ |Dxπ(i) | ≤ |Dxπ(j) |

Definition 2. A value selection heuristic hv is a function that maps a set of
finite values of fixed cardinality k to a permutation: hv : 2Z → N→ Z.



Example 2. For instance, the min-value heuristic for x with domain D of cardi-
nality k specified as hv(D) denotes the permutation function π satisfying

∀a, b ∈ 0..k − 1 : a < b⇒ π(a) ≤ π(b)

Definition 3. A value symmetry breaking heuristic hs is a function that maps
a set of finite values of fixed cardinality k to a subset of non-symmetric values:
hs : 2Z → 2Z.

In the following, we assume that deg(x) denotes the cardinality of the set
of constraints referring to x. vars(c) denotes the subset of variables from X
that appear in constraint c. A(X) denotes the set of arrays of decision variables
(groupings) found among the declarations of X. type(c) denotes the nature of a
constraint c. Finally, G(C) denotes the set of the global constraint types found
in C, i.e., G(C) = {type(c) : c ∈ C}∩GT where GT is the set of global constraint
types supported by the Comet solver.

3.2 Rules and Recommendations

Definition 4. Given a CSP M = 〈X,D,C〉, a Cp-as rule r ∈ Rules is a
quadruple 〈S,P,V,H〉 where S is a scoring function S : M → 〈Rn〉 where n > 0
and P is a priority function P : M → 〈Zn〉. V : 2X → 〈2Xn〉 is a function
returning a vector of subsets of variables subjected to the recommended search
heuristic. Finally, H : M → 〈〈hx, hv, hs〉n〉 is a function returning a vector of
triplets of heuristic functions.

All scores are normalized in the 0..1 range with 1 representing the strongest fit.
While priorities are in the 1..∞ range with 1 representing the highest priority. In
addition, Cp-as uses priorities not only to break ties when rules come up with
the same exact score, but also, to scale the score so that the higher priority rules
get higher score.

Definition 5. A set of recommendations {〈Si, Pi, Vi, Hi〉 : 0 < i ≤ n} resulting
from applying a rule r = 〈S,P,V,H〉 to a CSP M = 〈X,D,C〉, where S =
S(M), P = P(M), V = V(X), and H = H(M), produces the four vectors
〈S, P, V,H〉 all of length n representing the recommendations scores, priorities,
variable sets, and heuristics respectively.

Note that most rules issue a set of recommendations (i.e., n > 1). Some might
produce a singleton though (i.e., n = 1). In addition, currently recommendations
share the same priority of the corresponding rule.

3.3 Rules Library

Cp-as rules are meant to exploit modeled structures and properties such as
global constraints, domain sizes, or variables degree to name just a few. Cur-
rently, all the rules share the same value ordering heuristic, namely, min-value
ordering. This temporary limitation will be lifted in the near-future with the ad-
dition of other value-selection heuristics and their selection in finer-grained rules.



The symmetry breaking heuristic is a result of a global analysis of the model.
Even though each rule is endowed with a potentially specialized symmetry-
breaking heuristic, all the recommendations share the same symmetry breaking
heuristic. The following presents a description for each rule in the rule set:

Degree rule. Intuitively, the rule determines whether the static degrees of vari-
ables in the constraint hyper-graph are sufficiently diverse. If the degrees are all
very similar, a degree based heuristic is inappropriate. Conversely, a very diverse
set of degrees indicates a strong fit. The measure of diversity is based on the
relative frequencies of each member of the collection [6]. The degree variable
heuristic consists in choosing first the variable with the smallest domain size
while breaking ties with the highest static degree. The rule generates a set of
recommendations, one for each decision variable array a ∈ A(X) and scale their
scores by a ratio of the highest degree in the array to the highest degree overall.
Intuitively, if the array only contains variables with low degrees, the score will
be lowered (the ratio is maximum at 1 when the highest degree variable is in the
array). Accordingly, the rule consists of the following:

– S(< X,D,C >) = 〈S1, . . . , Sn〉 where n = |A(X)|.
– V(X) = 〈V1, . . . , Vn〉.
– H(< X,D,C >) = 〈H1, . . . ,Hn〉.

While a recommendation consists of the following:

– Si = (1−
∑z
d=1 p

2
d)·

maxx∈a deg(x)
maxx∈X deg(x) where z is the count of the distinct variable

degrees, and pd = freqd/|X| where freqd = |{deg(x) = d : x ∈ X}|.
– Vi = a.
– hx ∈ Hi is a combination of the first fail function defined earlier, and the

function π : N → X of the naturals 0..k − 1 that satisfies the following
property:

∀i, j ∈ 0..k − 1 : i < j ⇒ deg(xπ(i)) ≥ deg(xπ(j))

Global constraints rules. Global constraints are extremely useful in many CP
models. They capture common combinatorial substructures and exploit their
semantics to obtain effective filtering algorithms [3]. The Cp-as framework is
meant to include rules to take advantage of this fact. Currently, it offers rules
for the most frequently used global constraints such as alldifferent and the
knapsack. A few interesting observations are in order:

– When the variables vars(c) of a global constraint c coincide with a user-
specified grouping of variables (e.g., an array from A(X)), it is often effective
to first branch on this group. Similarly, when the ratio of |vars(c)| to the total
variables of the same constraint type tends to 1, it is often effective to first
branch on these variables as well.

– High couplings (i.e., a dense connectivity in the constraint graph) among
different variable groups resulting from the presence of many different global
constraint types (larger |G(C)|) tends to adversely affect the effectiveness



of such heuristic. Indeed, conflicting preferences for the different global con-
straints may be at odds with each other and any one choice may not dominate
or might even be counter-productive.

– Whenever several groups in A(X) are covered by global constraints, the array
with variables of higher degrees should be labeled first.

Given a global constraint c, a global rule applies to vars(c). Thereby, the rule
generates a set of recommendations, one for each global constraint of the same
type as c. The fallback variable selection heuristic, in case a specific global rule
does not wish to further specialize hx, is simply the first-fail heuristic. Accord-
ingly, the generic rule consists of the following:

– S(< X,D,C >) = 〈S1, . . . , Sn〉 where n = |{k : k ∈ C ∧ type(k) = type(c)}|.
– V(X) = 〈V1, . . . , Vn〉.
– H(< X,D,C >) = 〈H1, . . . ,Hn〉.

While a recommendation consists of the following:

– Intuitively, the more similar the constraint types used in the model, the
stronger the fit. Once again, the score is scaled by a ratio of the maximum
variable degree in the global constraint to the variable degree over the entire
model. If none of the global constraints covers an entire variable group, the
score is based on the relative size:

Si =


maxx∈vars(c) deg(x)

maxx∈X deg(x)·|G(C)| if∃a ∈ A(X) s.t. a ⊆ vars(c)

|vars(c)|
|{vars(k):k∈C∧type(k)=type(c)}|·|G(C)| otherwise.

– Vi = vars(c).
– hx ∈ Hi is the first fail function.

Knapsack Rule. When there is one knapsack constraint c ≡
∑
i∈N wi ·xi ≤ b de-

fined over vars(c) = {xi : i ∈ N} and this collection of variables coincides exactly
with a user-defined variable group, the suggested variable selection heuristic is to
consider the variables in decreasing weight wi order with ties broken by domain
sizes. Namely, whenever ∃a ∈ A : vars(c) = a with |vars(c)| = k, the produced
variable selection heuristic is a function π : N → X that satisfies the following
property

∀i, j ∈ 0..k − 1 : i < j ⇒ wπ(i) ≥ wπ(j)

Otherwise, the variable selection is the default first-fail heuristic.

Pick Value First Rule. If the size of the union of, the domain values of the
decision variables, is sufficiently bigger than the size of the decision variables set.
Then, the suggested heuristic is to choose the value, rather than the variable,
first and then this value is tried on all the variables containing this value inside
their domain. The rule generates a set of recommendations, one for each decision
variable array a ∈ A(X) with a score based on the ratio between the variables
size to the the domain range. Accordingly, the rule consists of the following:



– S(< X,D,C >) = 〈S1, . . . , Sn〉 where n = |A(X)|.
– V(X) = 〈V1, . . . , Vn〉.
– H(< X,D,C >) = 〈H1, . . . ,Hn〉.

While a recommendation consists of the following:

– Given an array a ∈ A(X), the score of the corresponding recommendation
tends towards 1 as the number of selectable values becomes substantially
larger than the number of variables in the array a. Formally,

Si =
{

1− 1
α ifα = |∪i∈aDi|

|a| ∧ α ≥ 1
0 otherwise

– Vi = a.
– hx ∈ Hi is a chronological order specified by the identity function π : N→ X

defined over the naturals 0..k − 1.

Most constrained variables Rule. This rule follows the first fail dynamic ordering
but in a slightly different way. It sorts each decision variables array a ∈ A(X)
according to their degree over the model constraints. Then, it branches on the
variables of each array based on their domain sizes. Thereby, the rule generates
a different recommendation for each decision variable array a ∈ A(X) with a
score determined by a ratio of the highest degree in the array to the highest
degree overall. Accordingly, the rule consists of the following:

– S(< X,D,C >) = 〈S1, . . . , Sn〉 where n = |A(X)|.
– V(X) = 〈V1, . . . , Vn〉.
– H(< X,D,C >) = 〈H1, . . . ,Hn〉.

While a recommendation consists of the following:

– Si = maxx∈a deg(x)/maxx∈X deg(x).
– Vi = a.
– hx ∈ Hi is the first fail function.

First-Fail. This is the default rule in the case of no other rules got a better
score. As the name implies, it follows the first fail principle. The score function
in this case returns a constant (ω ≈ 0). Thereby, the rule generates a single
recommendation (i.e., n = 1) with a suggested heuristic that sorts all decision
variables based on their domain sizes in an ascending order. Accordingly, the
rule consists of the following:

– S(< X,D,C >) = 〈ω〉.
– V(X) = 〈X〉.
– H(< X,D,C >) = 〈H1〉.



As for rule priority, the global constraints rule set has mainly the highest priority
(i.e., P → 1), while the default first fail rule has the lowest (i.e., P → ∞).
However, among the global constraints rule set itself, one rule’s priority can
be higher than another. For example, the knapsack constraint is more likely to
better distinguish the variables, thanks to the weights, whereas an alldifferent
constraint sees all the variables on equal footing. Hence, the knapsack rule gets
a higher priority. In addition, the degree rule gets a higher priority (due to its
wide use and effectiveness) than that of the the pick-value-first rule which has
in turn higher priority than that of the most constrained variables rule (which
is just an enhanced version of the first fail default rule).

3.4 Symmetry Breaking

Symmetries arise in many CP models, due to the fact that either certain vari-
ables or some domain values are indistinguishable. Symmetries are worthwhile
exploiting for two reasons. First, one is often interested in only one solution and
not all its symmetric cousins. Second, the search can be made significantly more
efficient by avoiding the repeated explorations of symmetric sub-trees that prov-
ably contain no solutions. Variable and value symmetries can be broken either
statically with constraints or dynamically through improvements to the search
process. While breaking symmetries statically is appealing for its simplicity it
can sometimes lead to unexpected behaviors when the filtering of the symmetry-
breaking constraint adversely affects the variable and value selection heuristics.
Breaking symmetries dynamically through the search avoids that issue. To syn-
thesize a search that implements a form of dynamic value symmetry breaking,
it is therefore necessary to first analyze the model to recognize value symmetries
and be in a position to dynamically collapse values to their equivalence classes
and only consider one value from each equivalence class when labeling.

The automatic derivation of value symmetry breaking is a key feature of Cp-
as1. It follows the work of [16] where the authors propose a compositional ap-
proach that detects symmetries in CP models by exploiting the properties of the
combinatorial sub-structures explicitly captured in the declarative model with
global constraints. They show that, once the symmetries of global constraints are
specified, various classes of symmetries can be derived precisely and efficiently
in a compositional fashion. Cp-as analyzes the constraints according to the
propositions/patterns found in [16,2]. If the compositions of the constraints are
value interchangeable, Cp-as breaks the symmetry by only considering values
previously selected plus one additional unselected value.

3.5 Rules Composition & Calibration

Recommendations can be composed to derive an effective search procedure. Cp-
as sorts the recommendations by score while breaking ties with priorities. The
search template is shown in Figure 1. Cp-as iterates over the recommendations
1 It is still at an early stage of development



in lexicographic order of score and priority. Line 2 invokes the polymorphic
labeling method label of the recommendation. Once all the variables are bound,
the search ends in line 3. The search is complete as the set of variables it labels
is
⋃
r∈rec

(
∪x∈V (r)

)
= X.

1 forall(r in rec.getKeys()) by (−rec{r}.getScore(), rec{r}.getPriority()) {
2 rec{r}.label();
3 if (solver.isBound()) break;
4 }

Fig. 1. A Skeleton for a Synthesized Search Template.

Figure 2 depicts the implementation of label method of a variable first recom-
mendation, i.e., a recommendation that first selects a variable and then chooses
a value as opposed to a value first recommendation that selects a value and then
chooses the variable to assign it to. Line 10 (respectively 23 for the value rec-
ommendation) retrieves the variables the recommendation operates on, and line
12 (respectively 27) selects a variable according to the heuristic hx of the rec-
ommendation. Line 13 (respectively 25) retrieves the set of values to try for the
chosen variable. Note that the getValues method encapsulates the use of value
symmetry-breaking. If there is no exploitable value symmetries, the getValues
method returns the complete domain for a variable xi. The value selection is
driven by the heuristic hv on line 14 (respectively 26) which embodies the value
permutation adopted by the recommendation.

4 Example Applications

In this section, the Cp-as synthesis process is illustrated on a few representative
combinatorial applications known for benefiting from non trivial search, namely:
the progressive party problem, scene allocation problem, and the steel mill slab
problem. The definitions of the problems are borrowed from [19,18]. The exper-
imental results provide a comparison on a more extensive set of problems and
instances which couldn’t be covered in details below due to space limitations.

4.1 Progressive Party

The progressive party problem must assign guest parties to boats (the hosts)
over multiple time periods while satisfying several constraints. Each guest can
visit the same boat only once and can meet every other guest at most once over
the course of the party. Moreover, for each time period, the guest assignment
must satisfy the capacity constraints of the boats.

Figure 3 depicts the model for the problem. The decision variable boat[g,p]
(line 2) specifies the boat visited by guest g in period p. Lines 4–5 specify every
guest must have an assignment in all periods, lines 6–7 specify the capacity
constraints on the boat for every time periods, and lines 8–9 state the social
mingling constraints, namely: two guests meet at most once during the course
of the evening.



1 interface Recommendation {
2 var<CP>{int}[] getVars();
3 set{int} getValues(var<CP>{int} x);
4 set{int} unboundVars(var<CP>{int}[] x);
5 int hx(var<CP>{int}[] x,int rank);
6 int hv(set{int} vals,int rank);
7 }
8 class VariableRecommendation implements Recommendation { ...
9 void label() {

10 var<CP>{int}[] x = getVars();
11 while(!bound(x)) {
12 selectMin(i in unboundVars(x))(hx(x,i)) {
13 set{int} values = getValues(x[i]);
14 tryall<solver>(v in values) by (hv(values,v))
15 solver.label(x[i], v);
16 onFailure solver.diff(x[i], v);
17 }
18 }
19 }
20 }
21 class ValueRecommendation implements Recommendation { ...
22 void label() {
23 var<CP>{int}[] x = getVars();
24 while(!bound(x)) {
25 set{int} values = collect(s in x.getRange():!x[s].bound()) x[s].getMin();
26 selectMin(v in values) (hv(values,v)) {
27 tryall<solver>(i in unboundVars(x)) by (hx(x,i)) {
28 solver.label(x[i], v);
29 onFailure solver.diff(x[i], v);
30 }
31 }
32 }
33 }
34 }

Fig. 2. The Variable/Value Recommendation Classes and their Label Methods.

1 Solver<CP> m();
2 var<CP>{int} boat[Guests,Periods](m,Hosts);
3 solve<m> {
4 forall(g in Guests)
5 m.post(alldifferent(all(p in Periods) boat[g,p]),onDomains);
6 forall(p in Periods)
7 m.post(multiknapsack(all(g in Guests) boat[g,p],crew,cap));
8 forall(i in Guests, j in Guests : j > i)
9 m.post(sum(p in Periods) (boat[i,p] == boat[j,p]) <= 1);

10 }
11 CPAS.generateSearch(m);

Fig. 3. A Model for the Progressive Party Problem.



Line 11 shows how the user invokes Cp-as to derive the search. The following
are the top rated recommendations generated by Cp-as:

{〈S1 = 0.5, Pknapsack, V1 = vars(c)〉 : type(c) ∈ G(C) ∧ type(c) = knapsack}⋃
{〈S2 = 0.25, Palldiff , V2 = vars(c)〉 : type(c) ∈ G(C) ∧ type(c) = alldifferent}

The highest scoring recommendations correspond to global constraints, as
they cover all the variables of the boat matrix. The synthesized search proceeds
through a sequence of phases, one for each recommendation, and labels each set
of variables corresponding to a knapsack constraint in the order dictated by the
chosen variable selection heuristic. Given that the knapsack constraint at hand
operates on a single column of the boat matrix at a time, it does not cover the
entire matrix and, therefore, the selected variable heuristic hx is first-fail. Note
that this synthesized search delivers a variable selection heuristic that coincides
with the tailored algorithm [13].

4.2 Scene Allocation

The problem deals with assigning specific days for shooting scenes in a movie.
There can be at most 5 scenes shot per day and all actors of a scene must be
present. Each actor has a fee and is paid for each day she/he plays in a scene.
The goal is to minimize the production cost. The objective function minimizes
the sum of each actor compensation, which is the actor fee times the number of
days he/she appears in a scene shot on that day. Figure 4 depicts the model

1 Solver<CP> m();
2 var<CP>{int} shoot[Scenes](m,Days);
3 var<CP>{int} nbd[Actor](m,Days);
4 int up[i in Days] = 5;
5 minimize<m> sum(a in Actor) fee[a] ∗ nbd[a]
6 subject to {
7 forall(a in Actor)
8 m.post(nbd[a]==sum(d in Days) (or(s in which[a]) shoot[s]==d));
9 m.post(atmost(up,shoot),onDomains);

10 }
11 CPAS.generateSearch(m);

Fig. 4. A Model for the Scene Allocation Problem.

for this problem. The decision variable shoot[s] (line 2) represents the day
scene s is shot. Whereas, the decision variable nbd[a] represents the number
of days an actor a appears in the scenes. The cardinality constraint (line 9)
specifies that at most 5 scenes a day can be shot. The objective function (line 5)
minimizes the sum of each actor compensation. The following are the top rated



recommendations generated by Cp-as:

{〈S1 = 0.15, Pdegree, V1 = shoot〉}⋃
{〈S2 = 0.1, Pcardinality, V2 = vars(c)〉 : type(c) ∈ G(C) ∧ type(c) = cardinality}⋃

{〈S3 = 0.025, Pdegree, V3 = nbd〉}

The highest scoring recommendations correspond to the degree rule. Indeed,
the scene allocation model has a nice variation among the static degree of its
decision variables. Note that the degree rule delivered two different recommen-
dations with different scores. Naturally, the first one with the higher score rec-
ommends branching on the variables of the array shoot since it is referred by
more constraints than the other array nbd. The synthesized search proceeds and
label the set of variables of the first recommendation. Since all the variables get
bound by the first recommendation, the search doesn’t need to go beyond that.

[10] suggests that the exact days assigned to the scenes have no importance in
this application and are fully interchangeable which is inferred by the symmetry
breaking analysis. Thus, value symmetries can be broken by only considering
days previously selected plus one additional unselected day.

Cp-as combines the degree heuristic and the value symmetry breaking. It
would be interesting to try a dynamic variable degree heuristic in the future.
Unlike the synthesized search, the tailored search [15] iterates over the scenes
and always chooses to assign first the scene with the smallest domain. Ties are
broken by choosing the most costly scene first. It employs the exact same value
symmetry breaking technique though.

4.3 Steel Mill Slab Design
The problem deals with producing n orders using a set of slabs. Each order o
has a color co representing the path the slab takes in the factory and a weight
wo for its size. Each slab has a capacity that must be chosen from the increasing
set of capacities {u1, u2, . . . , uk}. A solution is an assignment of orders to slabs
such that:

– The total weights of the orders in a slab must not exceed the slab capacity.
– Each slab contains at most two colors.

The objective is to minimize the sum of the weights of the slabs used in the
solution or, equivalently, the sum of losses (unused capacity) in the slabs used
in the solution.

Figure 5 depicts the model for this problem. The decision variable x[o] (line
2) specifies the slab assigned to order o, while variable l[s] (line 3) represents
the load of slab s. Once the load of a slab is known, it is easy to compute its
loss: simply take the smallest capacity supporting the load. Line 5 computes an
array of losses for each possible capacity, while the objective function in line 6
uses the element constraint to compute the loss of each slab. The following are



1 Solver<CP> m();
2 var<CP>{int} x[Orders](m,Slabs);
3 var<CP>{int} l[Slabs](m,0..maxCap);
4 var<CP>{int} obj(m,0..nbSlabs∗maxCap);
5 int loss[c in 0..maxCap] = min(i in Caps: capacities[i] >= c) capacities[i] − c;
6 minimize<m> obj subject to {
7 m.post(obj == sum(s in Slabs) loss[l[s]]);
8 m.post(multiknapsack(x,weight,l));
9 forall(s in Slabs)

10 m.post(sum(c in Colors) (or(o in colorOrders[c]) (x[o] == s)) <= 2);
11 }
12 CPAS.generateSearch(m);

Fig. 5. A Model for the Steel Mill Slab Design.

the top rated recommendations generated by Cp-as:

{〈S1 = 1, Pknapsack, V1 = vars(c)〉 : type(c) ∈ G(C) ∧ type(c) = knapsack}⋃
{〈S2 = 0.1, Pdegree, V2 = x〉}

The highest scoring recommendation corresponds to the knapsack rule (score
=1). The slab model contains only one type of global constraints (i.e, knapsack)
and the sole constraint fully covers a decision variable array (i.e., x). Hence, the
variable ordering is based on the knapsack weights. Again, since all the variables
get bound by this recommendation, the search doesn’t need to go beyond that.

Similar to the scene allocation symmetry property, two empty slabs are equiv-
alent for allocating an order and are fully interchangeable [18]. Again, Cp-as
takes advantage of this property and breaks the value symmetries by only con-
sidering slabs in which some orders have been placed plus one additional empty
slab.The tailored search is just a slightly different [18]. It iterates over the or-
ders, selecting first the orders with the smallest domains and breaking ties by
choosing orders with the largest weight in a chronological order.
5 Experimental Results
Preliminary experiments show the practicality of Cp-as on a range of problems.
It compares synthesized, tailored, and first fail procedures on the same models.
The tailored procedures were taken from the state-of-the art. Table 1 reports
the number of choices, the average CPU time (in seconds), and its standard
deviation.

The selected benchmarks are well-known CSP and COP problems that use
tailored search procedures. The steel mill slab model is tested on the CSPLib
[5] instance as well as two more instances (20-10, 18-10) from [8]. Similarly, the
car sequencing model is tested on 3 instances (car-1,car-2,car-3) from [5]. In
addition, the progressive party problem is tested on different configurations and
periods (1-9, 2-8, 6-6) from [5].

All results were obtained from 50 runs with COMET 2.1 on 2.33GHz Intel
Core Duo machine with 2GB RAM running Ubuntu 9.10. A time out of 5 min-
utes (i.e., 300 ms) is employed. The results show that the synthesized search is



Problem #cp,t (FF) #cp,t,σ (Cp-as) #cp,t,σ (tailored)
Slab (csplib) >300 866,2.688,538 1656,4.755,666
Slab (20-10) >300 1093,3.497,522 908,2.451,343
Slab (18-10) >300 1672,7.047,1034 >300

Scene Allocation >300 10124,1.405,197 4331,0.621,88
Car (car-1) >300 475,0.529,74 77,0.172,25
Car (car-2) >300 >300 69,0.173,25
Car (car-3) >300 >300 669,0.825,116

Perfect Square >300 74,0.191,27 74,0.182,26
Progressive (1-9) >300 326,0.156,22 326,0.158,22
Progressive (2-8) >300 2675,0.845,118 2675,0.798,112
Progressive (6-6) >300 185,0.112,16 185,0.107,15

Warehouse 1645, 0.072 119,0.118,3 70,0.007,2
SGP (8-4-7) 168, 0.298 533,0.478,67 146,0.146,138
Sports Avenue >300 11069,9.721,1361 11062,9.471,1326
Graph Coloring >300 308676,28.301,3969 491736,22.124,3101
R-robin Tourn. >300 10474,8.614,1206 10474,8.318,1164

Table 1. Experimental Results.
often reasonably close to the tailored search procedures. In particular, the syn-
thesized search of the progressive party is competitive with the tailored search
on all instances. For the scene allocation problem, the static-degree selected by
the synthesizer is quite competitive with the tailored search. Surprisingly, the
synthesized search outperforms the tailored search for the steel slab mill problem
(the synthesized search uses a variable heuristic first driven by the weights of
the knapsack, then by domain size). Indeed, it outperformed the tailored search
substantially on the instance (18-10), the hardest among the 3 used instances,
while having good results on the other ones too.

In the case of car sequencing, the synthesized search was decent on the easiest
instance. However, it failed to scale to the harder instances. This is probably
due to a sophisticated value selection heuristic employed by the tailored search
that Cp-as does not support yet. A variety of value selection heuristics will be
investigated shortly.

Additional experiments performed on several easier models, which do not re-
quire sophisticated search, indicate no significant degradation in the performance
compared to the first fail search. The small overhead observed on some instances
is due to the generic data structures manipulated by the search template. In a
nutshell, the synthesized algorithms are competitive to tailored algorithms of-
fering a reasonable first search with no efforts beyond modeling.

6 Conclusion & Future Work
Cp-as is a framework to automatically generate search algorithms from high-
level CP models. Given a Comet CP model, Cp-as recognizes and classifies
its structure to synthesize an appropriate algorithm. Preliminary empirical re-
sults indicate that the technique appears to be competitive with state-of-the-art
procedures on several classic benchmarks.

While the approach demonstrates potential, work remains to augment the
rule set. Ideally, rules should capture as many strategies as possible and recognize



when they are applicable. Improvements to the composition mechanism, the
symmetry breaking inference capabilities, as well as an ability to handle search
strategies are needed. Finally, an in-depth empirical evaluation is absolutely
essential.
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